天天头条:一个简单的8位处理器完整设计过程及verilog代码
2023-04-10 15:23:32 EETOP

一个简单的8位处理器完整设计过程及verilog代码,适合入门学习参考,并含有作者个人写的指令执行过程。

1. CPU定义


(资料图片)

我们按照应用的需求来定义计算机,本文介绍一个非常简单的CPU的设计,它仅仅用来教学使用的。我们规定它可以存取的存储器为64byte,其中1byte=8bits。所以这个CPU就有6位的地址线A[5:0],和8位的数据线D[7:0]。

我们仅定义一个通用寄存器AC(8bits寄存器),它仅仅执行4条指令如下:

InstructionInstruction CodeOperation
ADD00AAAAAAAC<—AC+M[AAAAAA]
AND01AAAAAAAC<—AC^M[AAAAAA]
JMP10AAAAAAGOTO AAAAAA
INC11XXXXXXAC<—AC+1

除了寄存器AC外,我们还需要以下几个寄存器:

地址寄存器A[5:0],保存6位地址。

程序计数器PC[5:0],保存下一条指令的地址。

数据寄存器D[7:0],接受指令和存储器来的数据。

指令寄存器IR[1:0],存储指令操作码。

2.取指设计

在处理器执行指令之前,必须从存储器取出指令。其中取指执行以下操作:

1〉通过地址端口A[5:0]从地址到存储器

2〉等待存储器准备好数据后,读入数据。

由于地址端口数据A[5:0]是从地址寄存器中读出的,所以取指第一个执行的状态是

Fetch1: AR<—PC

接下来cpu发出read信号,并把数据从存储器M中读入数据寄存器DR中。同时pc加一。

Fetch2: DR<—M,PC<—PC+1

接下来把DR[7:6]送IR,把DR[5:0]送AR

Fetch3: IR<—DR[7:6],AR<—DR[5:0]

3.指令译码

Cpu在取指后进行译码一边知道执行什么指令,对于本文中的CPU来说只有4条指令也就是只有4个执行例程,状态图如下:

4.指令执行

对译码中调用的4个例程我们分别讨论:

4.1 ADD指令

ADD指令需要CPU做以下两件事情:

1〉从存储器取一个操作数

2〉把这个操作数加到AC上,并把结果存到AC

所以需要以下操作:

ADD1:DR<—M

ADD2:AC<—AC+DR

4.2 AND指令

AND指令执行过程和ADD相似,需要以下操作:

AND1:DR<—M

AND2:AC<—AC^DR

4.3 JMP指令

JMP指令把CPU要跳转的指令地址送PC,执行以下操作

JMP1: PC<—DR[5:0]

4.4INC指令

INC指令执行AC+1操作

INC1: AC<—AC+1

总的状态图如下:

5 建立数据路径

这一步我们来实现状态图和相应的寄存器传输。首先看下面的状态及对应的寄存器传输:

Fetch1: AR<—PC

Fetch2: DR<—M,PC<—PC+1

Fetch3: IR<—DR[7:6],AR<—DR[5:0]

ADD1:DR<—M

ADD2:AC<—AC+DR

AND1:DR<—M

AND2:AC<—AC^DR

JMP1: PC<—DR[5:0]

INC1: AC<—AC+1

为了设计数据路径,我们可以采用两种办法:

1〉创造直接的两个要传输组件之间的直接路径

2〉在CPU内部创造总线来传输不同组件之间的数据

首先我们回顾一下可能发生的数据传输,以便确定各个组件的功能。特别的我们要注意把数据载入组件的各个操作。首先我们按照他们改变了那个寄存器的数据来重组这些操作。得到如下的结果:

AR:AR<—PC;AR<—DR[5:0]

PC:PC<—PC+1;PC<—DR[5:0]

DR:DR<—M

IR:IR<—DR[7:6]

AC:AC<—AC+DR;

AC<—AC^DR;

AC<—AC+1

现在我们来看每个操作来决定每个组件执行什么样的功能,AR,DR,IR三个组件经常从其他的组件载入数据(从总线),所以只需要执行一个并行输入的操作。PC和AC能够载入数据同时也能够自动加一操作。

下一步我们把这些组件连接到总线上来,如图所示:

如上图所示,各个组件与总线之间通过三态连接,防止出现总线竞争。AR寄存器送出存储器的地址,DR寄存器用于暂存存数起来的数据。到现在为止我们还没有讨论有关的控制信号,我们现在只是保证了所有的数据传输能够产生,我们将在后面章节来使这些数据传输正确的产生---控制逻辑。

现在我们来看以下者写数据传输中有没有不必要的传输:

1〉 AR仅仅提供数据给存储器,所以他不需要连接到总线上。

2〉 IR不通过总线提供数据给任何组件,所以他可以直接输出到控制单元(后面章节)。

3〉 AC不提供数据到任何的组件,可以不连接到总线上。

4〉总线是8bit宽度的,但是有些传输是6bit或者2bit的,我们必须制定寄存器的那几位送到总线的那几位。

5〉 AC要可以载入AC和DR的和或者逻辑与的值,数据路径中还需要进行运算的ALU。

由此我们做以下工作:

1〉去掉AR,IR, AC与总线的连接。

2〉我们约定寄存器连接是从总线的低位开始的。AR,PC连接到Bus[5:0],由于IR是接受DR[7:6]的,所以可以连接到总线的Bus[7:6]。

3〉我们设定,AC作为ALU的一个输入,另一个输入来自总线Bus。

下面我们检查是否有争用总线的情况,幸运的是这里没有。修改后的CPU内部组织图如下:

6. ALU设计

这个CPU的ALU执行的功能就是两个操作数相加、逻辑与。这里不作详细介绍。电路如如下:

7. 控制单元

现在我们来考虑如何产生数据路径所需的控制信号,有两种方法:硬布线逻辑和为程序控制。这里我们用硬布线逻辑来实现。

这个简单的CPU需要的控制逻辑由三个部件组成:

1〉计数器:用于保存现在的状态

2〉译码器:生成各个状态的控制信号

3〉其他的组合逻辑来产生控制信号

一个通用的控制单元原理图如下:

对于这个CPU来说,一共有9个状态。所以需要一个4bit的计数器和一个4-16的译码器。接下来的工作就是按照前面的状态转换图来对状态进行赋值。

首先考虑如何的对译码输出状态进行赋值才能达到最佳状态。我们按照以下规则:

1〉给Fetch1赋计数器的0值,并用计数器的清零端来达到这个状态。由这个CPU的状态图可以看出,除了Fetch1状态外的状态都只能由一个状态转化而来,Fetch1需要从4个分支而来,这4个分支就可以发出清零信号(CLR)来转移到Fetch1。

2〉把连续的状态赋连续的计数器值,这样就可以用计数器的INC输入来达到状态的转移。

3〉给每个例程的开始状态赋值时,要基于指令的操作码和这个例程的最大状态数。这样就可以用操作码来生成计数器的LD信号达到正确的状态转移。首先,在Fetch3状态发出LD信号,然后要把正确的例程地址放到计数器的输入端。对这个CPU来说,我们考虑以地址1 [IR] 0作为计数器的预置输入。则得到状态编码如下:

InstructionStateIRcounter
FetchFetch10000
Fetch20001
Fetch30010
ADDADD1001000
ADD2001001
ANDAND1011010
AND2011011
INCINC1101100
JMPJMP1111110

如上表所示,下面我们需要设计产生计数器的LD、INC、CLR等信号,总的控制单元的逻辑如下图:

下面我们用这些译码信号来产生数据路径控制所必需的AR、PC、DR、IR、M和ALU的控制信号。首先考虑寄存器AR,他在Fetch1状态取PC的值,并在Fetch3状态取DR[5:0]的值,所以我们得到ARLOAD=Fetch1 or Fetch3。以此类推我们可以得到如下结果:

PCLOAD=JMP1

PCINC=Fetch2

DRLOAD=Fetch1or ADD1 or AND1

ACLOAD=ADD2 or AND2

IRLOAD=Fetch3

对于ALU的控制信号ALUSEL是用来控制ALU做逻辑或者算数运算的,所以有:

ALUSEL=AND2

对于片内总线的控制较为复杂,我们先来看DR,对于DR他只在Fetch3、AND2 、ADD2和JMP1状态占用总线进行相信的数据传输,所以有:

DRBUS=Fetch3 or AND2 or ADD2 or JMP1

其他类似有:

MEMBUS=Fetch2or ADD1 or AND1

PCBUS=Fetch1

最后,控制单元需要产生存储器的读信号(READ),它发生在Fetch2、ADD1、AND1三个状态:

READ=Fetch2or ADD1 or AND1

这样我们得到了总的控制逻辑,完成了整个CPU的设计。

8.设计验证

我们执行如下指令进行设计验证,

0:ADD4

1:AND5

2:INC

3:JMP0

4:27H

5:39H

指令执行过程如下(初始化所有寄存器为全零态):

InstructionStateActive SignalsOperationsNext State
ADD 4Fetch1PCBUS、ARLOADAR<—0Fetch2
Fetch2READ、MEMBUSDRLOAD、PCINCDR<—04HPC<—PC+1Fetch3
Fetch3DRBUS、ARLOADIRLOADIR<—00AR<—04HADD1
ADD1READ、MEMBUSDRLOADDR<—27HADD2
ADD2DRBUS、ACLOADAC<—0+27HFetch1
AND 5Fetch1
Fetch2
Fetch3
ADD1
ADD2
INCFetch1
Fetch2
Fetch3
INC1
JMP 0Fetch1
Fetch2
Fetch3
JMP1

审核编辑:汤梓红

相关新闻: